Although widely attributed to Edwin Hubble, the notion of the universe expanding at a calculable rate was first derived from the general relativity equations in 1922 by Alexander Friedmann. Friedmann published a set of equations, now known as the Friedmann equations, showing that the universe might expand, and presenting the expansion speed if this was the case. Then Georges Lemaître, in a 1927 article, independently derived that the universe might be expanding, observed the proportionality between recessional velocity of and distance to distant bodies, and suggested an estimated value of the proportionality constant, which when corrected by Hubble became known as the Hubble constant. Though the Hubble constant H0{\displaystyle H_{0}} is roughly constant in the velocity-distance space at any given moment in time, the Hubble parameter H{\displaystyle H}, which the Hubble constant is the current value of, varies with time, so the term 'constant' is sometimes thought of as somewhat of a misnomer. Moreover, two years later Edwin Hubble confirmed the existence of cosmic expansion, and determined a more accurate value for the constant that now bears his name. Hubble inferred the recession velocity of the objects from their redshifts, many of which were earlier measured and related to velocity by Vesto Slipher in 1917.

- Nasa Probe New S
- Pvusd Astronomy Text Book
- What Are The Eight Planets In Order
- Is Gliese 581 Safe
- The Many Moons Of Jupiter
- Gemini Lunar Lander
- Gemini Space Program History Iv
- Nebula-class Starship Schematics
- Anime Moon Bruno Mars Talking To
- Earth-like Planet Gliese 581
- Real Mercury Solar System
- Planet Earth Wallpaper Desktop

- Hubble's Law Definition
- Hubble's Law Of Cosmic Expansion
- Hubble's Law Equation
- Hubble's Law Formula
- Hubble's Law States That
- Hubble's Law Graph
- Hubble's Law For Kids
- Hubble's Law Calculator
- Hubble's Law Astronomy Definition